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a1 AGSTkACTc

A radially directed load is suddenly applied to a portion of the outer surface

of a circular cylindrical shell which responds in a state of plane strain. An

analytical solution for the resulting dynamic response is obtained within the

context of linear elasticity theory, Fl"igge shell theory, and an "improved" shell

theory. A comparison of the analytical solutions and numerical results for a

specific loading indicate that the improved theory is far superior to the Fl1gge

Theory in termu of predicting both the magnitude and chfracteristics of the response.,

However, as expected, neither shell theory can satisfactorily predict the wave

character of the initial response.
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ABSTRACT

A radially directed load is suddenly applied ýo a portion of the outer surface

of a circular cylindrical shell which responds in a state of plane strain. At,

analytical solucion for the resulting dynamic response is obtaired within the con-

text of linear elasticity theory, Fluigge shell theory, and an "improved" shell

theory. A comparison of the analytical solutions .. , numerical results for a

specific loading indicate that the improved thory is far superior to the Fiugge

theory in terms of predicting both the magnitu1!(. ,nd characteristics of the

response. However, as expected, neither shell thC-oe.',' can satisfactorily

predict the wave characier of the initial response.



ACKNOWLEDGMEN.;

The authors wish to thank the United States Air Force Office of

Scientific Research for its financial support of this research through Grant

NO. AF•-AFOSR-98,S-67. Computer ficilities were generously made available

by the Computing Center at the State University of New York at Buffalo, which

is partially supported by N.I.t1 Grant FR-00126 and N.S. F. Grant GP-7316.

iii



I

TABLE OF CONTENTS

Section Page

Abstract ii

Acknowledgment iii

Lic' of Figures v

Nomenclature vi

1. Introduction 1

II. Statement of the 1Problem 7

III. Theory of Ellasticity 9

A. Basic Equations 9

B. Solution of the Equations of Elasticity 12

C. Discussion of the Elastiditv Solution 32

IV. A Numerical Exam)le 36

V. Conclusions 60

Appendix I Lanezos' St, oothing Technique 63

Appendix II Cross Products of I3essel Functions 65

Appendix III Shell Theory Solutions 68

References 73

iv



LIST OF FIGURES

Figure Page

1 Shell Geometry 6

2 Load Distribution Function vs. Polar Angle 37

3 Static Radial Displacement vs. Polar Angle 47

4 Static Circumferential Displacement vE, Polar Angle 48

5 Static Hoop Stress vs. Polar Angle 49

6 Static flooD Stress vs. Polar Angle 50

7 Static Shear Stress vs. Polar Angle 51

8 Static radial Stress vs. Polar Angle 52

9 Initial Response:' Radial Stress vs. Time 53

10 Initial Response: Shear Stress vs. Time 54

11 Initial Response:' Hoop Struss vs. Time 55

12 initial Response:- lloop Stress vs. Ti ne 56

13 Radial Displacement vs. Time 57

14 Circumfereittiall Displacement vs. Time 58

15 Htoop Stress vs. Time 59

Table I w., Starting Values 39

Table II Comparison of Natural Frequencies. 40



NOMENCLATURE (I)

Dimensional Physical F-L-T
Quantity Description Units

A, g Lam6's constants F/L 2

p elastic material density FT 2/L4

CD , 2L dilatational wave speed L/T

Cs shear wave speed L/TIP
R median surface radius L

h shell thickness L

Po radial load intensity F/L 2



NOMENCLATURE (I)

Dimensionless To convert to Physical
Quantity dinensional form Description

multiply by

y = Cs!/CD 1 wave speed ratio

a = h/R 1 thickness ratio

1!9 r 1 R radial coordinate2

- T7 7 - 1 plane polar angle

0 , <-'< time
D

W, v radial and circumferential
p CD displacements respectively

9P radial, circumferential
r ' ;P and shear stresses

P R2respectiv'ely

2( displacemnent poteotials

I1



I. INTRODUC rION

The small motions of an isotropic, elastic medium, produced by a dis-

turbance of its bounding sar.aces, may be described mathematically by the

equations of the thr e dimensional theory of elasticity together with appropriate

boundary and initial conditions [ 11. (1) The first investigations of these equations

of motion in cylindrical coordinates were conducted by Pochhammer [2] in 1876

and Chree [ 3] in 1889. Their studies dealt with the propagation of free harmonic

waves in a solid cylinder which was infinite in crtent in the direction of its

generators. Si ce then several extensions and refinements of these initial studies

have been made, most notably the addition of numerical data for the frequency

equations. For a thorough discussion of Pochhammer's work and some of the

subsequent investigations, the books by Love [D] and Kolsky F51 should be

consulted.

The slidy of the motions of cylindrical shells using these equations is

considerably more rL..:nt. It was only in the past two decades that an extensive

effort was made to study the free harmonic vibrations of cylindrical shells as

characterized by the three dimensional theory of elasticity. For a sample of

the literature on this subject references 76] through [ 19j should be consulted.

Also, recent studies have been made of the f -rced motion and transient re-

sponse of cylindrical shls using this theory. ',or example, in 1964 Liu and

Chang [201 inmestigat,,d the transient radial displacement of an infinitely

long cylindrical shell subjected to an internal axisymmetric blast load and

(1)Numbers in brackets designate references at th( 'nd of the paper.



sudden temperature change. By app'ying the method of Mindlin and Goodman [21]

to the problem, they "ere able to construct a solution in terms of the nol. al

modes of vibration of the cylinder.

Subsequently Suzuki [22] considered the problem of a circular ring subjected

to a transient pressure loading of both the inner and outer surfaces. He attacked

the problem with a combination of Laplace Transforms for the time varipble to-

gether with a harmonic analysis with respect to the angular ,oordinate in the

plane of the ring. He thus formulated the general problem of a suddenly applied,

exponentially decaying load, arbitrarily distributed over the lateral surfaces of

the ring. However, he only r-o:,ented solutions for the axialiy symmetric case.

In 1967 Garnet and Crouzet-Pascal [23] investigated tho response of an

infinite cylindrical shell imbedded in an infinite elastic medium produced by a

plane dilatational wave traveling through the medium in a direction normal to the

cylinder's axis. Their approach was to construct a train of incident pulses

from steady-state components such that each pulse contained the time history

of the transient stress in the incident wave. By making the time interval between

successive pulses sufficiently large, the cylinder would return to its original,

unstrained state before the arrival of the next pulse in the train. This occured

because of the radiation of energy from the cylinder through the surrounding

mte"lurn to infinity. This approach proved to be very successful and results

were obtained to illustrate the time history of the stresses and displacements

in the cylinder.

The examples cited above illustrate that the forced motion of a cylindrical

shell as characterized by the three dimensional theory of elasticity is mathe-

matically very complex. A quantitative description of the response is extremely

difficult without the use of high speed computers. This is the principal reason

for the long delav between the initial investigations of Pochhammer and Chree

2



and those just mentioned. The cylindrical shell, however, is - very common

element with many and varied applications, therefore the need to analyze its

dynamic response arose long before the means for carrying out such an analysis

within the framework of the three dimensional theory of elasticity were avail-

able. This lead to the development of several, mathematically simpler,

"theories to describe the motion of cylindrical shells. These so called shell

theories were based on the assumption that the radial thickness of the shell

was much smaller than the radius of the nedlan surface of the shell. With

this assumption the dependent variables could be 3xpanded into convergent

power series in the thickness coordinate and the first one or two terms in these

expansions would suffice to describe the response of the shell. A theory of this

type was developed by Love [ 4] at about the same time as the Pochhammer and

Chree investigations. Since then numerous other shell theories have been

proposed. Most of these may be placed into one of the following three categories.

The first type of theory is called a membrane theory. Here, n,) variation of

the dependent variables through the thickness of the shell is permitted. Re-

ference to this type of theory is made by Rayleigh [24] anl the equations of

motion for a cylindrical shell may be found in the books by Fluigge £ 25] or

Vlasov [26]. The second category contains the classical shell theories. These

allow the dependent variables to vary linearly through the thickness of the

shell but in such a manner that straight line elementb normal to the median

surface of the shell in the unstrained state remain normal during the motion

of the shell. Furthermore, these elements retain their original length and

contribute no rotatory inertia to the motion. Love's equations arc contained

in this category along with those of Fligge, Donnell, Vlasov and Sanders.

The third category contains the improved theories. As in the classical theory

the dependent variables are allowed to vary linearly through the thickness of

3



the shell. The improvement is obtained by allowing the previously mentioned

line elements to rotate relative to the median surface and by including their

rotatory inertia in the motion of the shell. Although these line elements are

still required to remain straight and retain their original length, a further

improvement is obtained b. introducing a correction factor into the trans-

verse shear force to compensate for this. The magnitude of the correction

factor is obtained by matching the phase velocity of the lowest mode of

propagation of frev harmonic waves in the axial direction with that obtained

from the three, dimensional theory of elasticity [ 14]. The equations of motion

of a cylindrical shell characterized by the improved theory may be found in

the papers by llerrmann and Mirsky [27 1 and also Reismann and Medige [28].

As a result of the diversity of the proposed shell theories, the following

question arises. For a cylindrical shell subjected to a specific disturbance,

which of these theories predicts the response to within a given accuracy with

the least effort') This question may be answered 1ly comparing the' response

predicted by' each of the shell theories to the response predicted by the three

dimensional theory of elasticity for each specifi, disturbance. This approach,

however, would negate the only advantage of the shell theories, which is their

relative simpliitv compared to the three dimensional theory of elasticity. An

alternative approach is to carry out a comparison with the elasticity theory in

only a few specific cases which represent the limits of the range of possible

disturbances awl shell geometries. 1'roim these few iiniting cases rational

estimates of the' accur:ewv of the shell theories for various other disturbances

and shell .eome(trie's couid then be made. Some of thv,ýe limiting cases have

already I,en ln\'(stit4at(,dl and comparisons of the shell theories with elasticity

theorv' have been made. For example Klosner in references [ 20j through I 321

and • •.n.-or :nd Y•:ananida ',33" have examined various problems in%olving



cylindrical shells- which are statically loaded using elasticity theor, and shell

theories. I-,%vever, no comparisons have as yet appeared for the other extreme

r.ae, that is where the load is suddenly applied. Since most real loading situations

fall somewhere between these two extremes a comparison of the shell theories

to elasticity theory for the latter case would be of great interest. Therefore, the

primary purpose of this investigation will be to present such a comparison.

To accomplish this goal a cylindrical shell of circular cross section which

is infinite in the direction of its generators is subjected to a suddenly applied

force on its outer surface. This force is chosen to act only in the radial

direction and also to be invariant in the direction of the generators of the

cylinder. With these restrictions on the force the cylinder may be assumed to

be in a state of plane strain and therefore only a plane section normal to its

generators will be considered. The response of the shell predicted by the three

dimensional thenrN, of elasticity will be found using the method discussed by

Suzuki r 229. Next, the response of the shell predicted by the Fligge Theory

25., a classical theor , and also the improved theory due to llerrmann and

Mirsky [ 271 will 1w,' found from their correspon(dng Green's functions given

by Pawlik arnd Rvismann in [,341.

The time history of the' displacements and stresses at various points in

the shell as tharaeterized hy the threv theories will then be compared for a

specific shell geometry and load distribution.
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FIGURE I-B

FIGURE 1-A, SHELL GEOMETRY



II. STATEMENT OF THE PROBLEM

An infinitely long, circular cylindrical shell, composed of an isotropic,

linearly elastic material, is at rest and in an unstrained state. A load, directed

radially inward, is suddenly applied to the outer cylindrical surface of the sh'ell.

The distribution of the load on this surface is constant along the generators of the

cylinder but otherwise arbitrary.

To simplify the analysis of the resulting mot:on of the cylinder, its weight

will be neglected. In this case it may be assumed that the motion of any plane

section normal to the generators of the cylinder takes place entirely within thai

plane and is identical for ill such sections. In other words the shell responds in

a state of plane strain.

The initial geometry of a plane section of the shell together with a particular

load is shown in Figure 1. The applied load may be represented symbolically as

follows.

P(o,t) r. P0 go) 11(t) (1)

In (1), P0 is a reference pressure, go) describes the distribution of the load over

the outer boundary of the shell and 1i(t) is the Hleaviside step function with respect

to time:

11(t) ý0 : t (2)1 ,t> 02

The analysis of the motion for an arbitrary load distribution, g(e), is

facilitated by expressing g(9) in terms of a Fourier series.

-a
g(9) 1.. L '-T - • -- (a cos n9 - 1)Sinne) (n1

7



However, since ultimately a quantitative measure of the response is desired, the

above series will necessarily be truncated after summing some finite number of

terms (N). This results in an approximation of the actual distribution g(s) by the

finite sum g N(). The accuracy of this approximation for any given value of N

Smay be increased by applying the process of "smoothing," explained in Appendix
I, to In the present case this amounts to multiplying each term of the

truncated series by the factor sin

N

g ) + (nCos nS infl n8 (4)

n~

where n =a sin

The analysis will therefore be carried out for the load distribution gN(8)

given by Equation (4).

All the variables used in the following analysis are in dimensionless form

both for convenience and generality. The conversion to dimensional form is

given in the Nomenclature.



III. THEORY OF ELASTICITY

A. Basic Equations

Navier's equations of motion for an isotropic, linearly elastic material

may be written in dimensionless form as follows.

2 142 2-4 2 o (5)

S•t2

Here 6 is the displacement vector, I is the gradient operator, 2 = V * V is

the Laplician operator and y is the wave speed ratio. Using HelmholtzIs

Theorem C 36] the displacement vector field may be expressed as follows.

U 0+V X , 0(6)

( is the scalar potential and the vector potential of the vector field u. Sub-

stituting (6) into (5) results in the following equation.

[V2 t2 9 +6 X[2t2 - J

This equation is satisfied if

Mt2

and (7)

2-iV2• -• a t2

For the case of plane strain in cylindrical coordinates the displacement vector

and potentials are

u w(r,8,t) r + v(r, 6,t) "6
¢• :O~rO~t)(8)

t ZI 9



where r'! r z are the unit vectors in the radial, circumferential and axial

directions respectively. The kinematic and constitutive relations for the plane

strain case are

S#3w
-r )r

1  -)v w(9)

5�-. --
r r r

r e r (I1 2y e

' 13 = o 1 - 2-/2 )er (10)

2
-" =y S

where er, eo, r' 10 are the normal strains and corresponding stresses while

s and r are the shear anrle and shear stress respectively.

Substitution of (8) into (6) and (7) yields the following set of equations:

2 1 -1
r jr 2 3 t2

r ~

r2

" - •r2 2 ]
.r2 r ;r rt2 212 A t 2

;r r e
(12)

Substit'.tng (12) into (9), then (bI into (10) results. with the aid of (11), in the

following, relations*

- 2 yr 1'1 r
t r A-2

2 2 
(13)

10



6t2 9.,2 Fa1C,2 TL2 r-r)-a (13)

The initial conditions for the problem under consideration are

.• 0 (r,8, 0) (r,O, 0)=. 0

at• Jt=O - at Jt=O=

The boundary conditions are

:r(X,@,t) 9-0N()11(t)

"(X,S,t) - 0
(15)

Zr(Y,@,t) = 0

T(Y,e,t) = 0

where X = x = I + -- and Y = y = 1 - are the outer and inner radii of the shell,

respectively.

11
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B. Solution of the Equations of Elasticity

The solution of the system of equations, boundary conditions and initial

conditions (11) through (15) will now be obtained by a combination of harmonic

analysis and Laplace transformation.

In view of the boundary conditions (15) and the form of gN( 6 ) given by (4),

the dependent variables in (11) through (15) may be assume(d to be in the following

form,
N

,.i(r,0,t) T- -- 4? (r,t) _ n(r,t)(ar -os n - sin n6) (16-a)
01 ni OnG

n- 1

N

-(r,e,c) - 1 ., n(r,t)(rn sin nA + cnCos n9) (16-b)

n - 1

N

w(r,,t) - - L- Wn(r,t) W 1W1(r,t)(8 1Cos n n - $nSin n)j (17-a)

n I
N

v(r,6 , t) 1- V (r,t)(n sin nO . cos nO) (17-C))
-- n n n

n I
N

r(r, ,)t) I L2 S- o(rt) 0 S n (r't)( eCos lie - sin n6) (I-a)
n 1

N1;,"o 6 6

,lr,9,t) - L-- '(rt),t) S(r)G e n6 - • sin nO) (cIs h,)

n n n -

n 1

N
I -,r(r,9,t) -: 1' T(r,t)(insin n6 4 ,conC n9) (is-c)

n I

The mo(dal cocificients " , ,Tn etc, are' determincd by substituting the

assumed solution, (1;) througih (1,) into the re-lations (11) through (15), "rhis

12



results in the foilowing set of equations.

22 2
2, 1 n n (19-a)

r r r r2 5t 2

S••-2 2 6 n2 2

a + . 21 nL 1 2n (1J-b)1 r a r r 22 at2

i 0(r,t) 0 (19-u)

On(r, 0) = PI(r, 0) = 0 (20-a)

n t= ' 0 (2G-I)

Snr(X,t) - 1H(t) ,S(Y,t) 0 (21-a)

T n(X,t) = 0 , Tn(Yt) 0 (21-b)
Sn

W n(r, ) r - n (22-a)n 'r r n,,

Vn(rt) -6 -tn (22-1))rnr r n
22

r5"• 2 n2nTnr(r, t) 2 Y V W nW (22-c)

nt2 r n n
9

( -(1 - 22) W-nV (22-v)n5Ut2 r n n

where n =0, 1,2, . ,NJ.

The solution of the differential equations (19) may be obtained hY applic~at:on

of the Laplace transformation defined below.

f(r,P) f f f(r,t)e-Ptdt (23-a)

13



f(r,t- 1J (r, P)e' 'd. (2 31-b)

C - i~o

In the above integral, known is Bromwich's integral form,da, i = .- and the real

number C is chosen so that P = C lies to the right of all the singularities of f(r,P)

in the complex P-plane.

Applying the transformation (23-a) to the set of equations (19) through (22)

results in the fcllowing system of equations:

[4+ - - P2 ý)]ýn- (24-a)
rd r r

S2 41 d p2 2(21-b)?-r r dr 2 Er ~
dr y r

4', (r, P)- 0 (24-c)

n (X, P) - P ' r(Yp) 0 (25-a)

TntXp) O , T•1T'- r o0 (25-b)

W (r, P) (26-a)n dr r n

V(r, r----L
..r r n 2

Yn(r'p) "P 2 •n-2•Vr - ~ ]16

Sn(r,P) - 2 P )Yp2 n -r n- nn (26-C)

where n (0,1,2, . .,N}.

The solution of equations (24) is (see for example [35])

4n(r, P) - A n(P)In (Pr) B n(P)K (Pr) (27-a)

•n(r, P) C (P)I Pr 1 Dn(P)Kn (27-b)



to(r, P) =- 0 (27-c)

where I and K are the n Adified Besdel functions of the first and second kindn1 n

respectively. The ccnstsa-iis A;, Bn, CD and D are determined as follows. Sub-

stitute (27) into the relations (26) to obtain expressions for the modal stresses. Next,

substitute these expressions into the boundary conditions (25). This results in a

set of linear algebraic equations from which the constants An, Bn, Cn and Dn may

be uniquely determined. After substituting the constants thus obtained into (27) it

io observed that all the modified Besse! functions may be conveniently grouped into

four new functions called the crosE, produfts of the modified Bessel functions. These

are defined below:

FPI)(P,X,Y) I (PX)KI (PY) - I (PY)K (PX) (28-a)
nn I n n

(n2)(pxY) PYt I (PX)K'(PY) - I'(PY)Kn(PX)1 (28-b)
n n n n n

F(3 ) (P, X, Y) PX EIi'(PX)Kn(PY) - In(PY)Kn(PX)l (28-c)

I /o(PX)K'o(PY)- I'(PY)K'(PX) ,n=O
VF4 (P,4 X, Y) - (28-d)

IP2X"[1'(PX)K (PY) - n (PY)K,(PX)l n - 0n n n n,

where a prime denotes diffL :entiation with respect to the argument of the function.

The properties of tVese functione used in the forthcoming analysis are listed in

Appendix II.

In rerms of these cross products the solution may now be written as

C•( r, P)

(r,P) W- (29-a)n Pr 3 D n (P )

C'(r, P)
• (rP) - o 0 (29--b)P3F~(P) <

where ZnOand C*n are given below.
n n

For n = 0:

15



P) - o r Y) p2) (30-a)
y

D 0 (P) -~ P F ,(P, X,Y) - (2(P, X,Y)

- ?.Zy;(3 ) (P,X, Y)4 4y^ ';~(4 )(p, X, y) (30-1))
y 2 o XY -o "

For n = 1,

--(rAP) 1 -LA(r, P) (31-a)
1' 2

C (r, P) -A (r, P) (31-1))

13D1(P) = -T7l (P) (31-c)

For n (2,3,4, N):

& (r,P) A•(r,P) (n 2- 1)n o(r,P) (32-a)

2t`
(r, P) - (r, P) (n -1)' (r, P) (32-b)

n n n

Dn(P) - A n (P) (n-- )Bn (P) (32-c)

The functions 7ý etc. are defined below in terms of the cross products for
n

n ( 1,2, , .. .Nit.

&-(P) 2 t2 (P)

n X'Z 2  x 2 2 n

2 2 2  -(21 24y i,2 4 .y n 2)4-y:,2)(p)_3

2 ) 1,2) (P)) - _l-ý) Py 2 X 2 )1X2 y y2 n

x 2y2L n n

An (P) nn 1__

'2 44 2>2 2 1 1 1 x 2  y 2N4X2 Y2 y- X-y Y

(continued on next page)
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y 2LX 4  x2n

y 2 4y 4n2 n~ + 4y2 n 2P 2 + p 4]F(13, 3) (P)

x 2L yA y2n

+4y4 ( 2 F)(4,4) (P) n2 P -(1, 2)(P
x 2Y2 n , 2 n~(P

4y~ii2 2  ( P3) + 4y 2flL (3 ,4 )p (P

Y2 Ly ,. ny

Where f(i, i)(pI -IFP(h,(Px,Y)TF(j) !!,X,y 1n XY)f) X
n 2 n 'fn y fly n

kP(r, P) 4Z 4y n Fl(,~) ()(,X

+ 2y 2 n 2 ) (P2+ 4y 2 n2 )F(1)(P~rY)Fi(1)(E,XY)
+ +x 2y 2

2y~ 2(p 2 + 2y 2 ) 2 ,ý2 ,Y

'\ 2 2  4 2 \- p(3)/P
f+) P r, n ,XY)PJ-X i~

n n__ 2'y~ )'yX2 ). 2 n

2 2
2y n (,,2 + PM "'p Y T()

Y~r(2(pXy) +F(2)KLr(,Y))(P. X '
4y- 4~ '[rF') 1 ' P, r, ( ,X,)

x 2Y2 ny

17



_I n 2(p)x I 2yP2)F(4)(p, X, Y)

-(2X 2n 2  2nr,Y)+Y)F)(Pry ()2  )(P, Xy )] )

2y 222nI) P()(,p 2)(I)(P X, y)-nrP2X2y4 n n

+ n224 n{ 2 Y P()(P, nr) !(' ' ,n- 2y2n2 01)(P, r, y),(3) pX, Y) + 2y 2p(2) (Pr, yFF(4)Py

The abcve relations wvil1 be referred to as equations (33).
The solution the time domain will now be obtained hy substituting (29)

into the B~romwich integral formula (23-b).
n nnt Ptdp

4'(rt) 2",--I"-J 34anCij P3 )2,(P) ( 3
nn P

ý2yn~~ • rY)0'n)(P,, Y- nP) , )p3(p ,y

-n (r,t 2 1;-P e dP p (34-b)

St) - i• p3 n(P)

For act 0, each wl the f dnctions (r,iP), o(r,P) and Dn(P) is (a) an entire

function of P, (b) symmetrical in P and (c) nonzero at P 0. Dn(P) has a de-

numerable infinity of simple zeroes located along the imaginary axis of the complex

P-plane for each value of n. If the magnitude of these zeroes is dlenoted b)y • nj then
n(+i .) 0 j 0,3 ,2... (35-a)

with

C - i"O p 18 1p



0< W no < W nl < Wn2 <*" (35-b)

The integrals (34-a, b) will now be evaluated by contour integration. From

the above discussion we conclude that both integrands have simple poles at

P = ± i W nj and a pole of order three at the origin. By applying the residue theorem

to the integral around a Bromwich contour with C > 0 the solutions are obtained

in the following form.

For t > 0:,

'n(r,t) = )(rt) + CnP(r, Wn)Q (t) (36-a)

n n nL n n

j =0

where

?2 5 Pt
O 1 t n(r,P)e (37-a)

2 Dip2 n D(P)

T(nS)(r,t) 2 (r,P)e(37-b)
a 2 D (P) 0

CnnC'O(r, W) = C 0 (r, ±iW) (38-a)
n n

nC (r, wa) - (r t: iw) (38-b)

D n() 5n( iW) (38-c)

cos WnjtQ nJ(t) - jjGn •j (39-a)
nj 4

wnj G nWj)

Gn(W) Gn(± iW) (39-1))

I dDn(P)n 2P dP (39-c)

By substitut'ng the potcntials (36) into 1 '2) we obtain the desired solutions for the

mod-,l displacements and stresses. 19



Wn(r, t) w•S)(r, t) W. Wn(r)QnjMt (40-a)

Vn(r, t) V(s)(r, t) + . Vn(r)Qn Mt (40-b)

j0

,~rt ~~,t j.)Qj )(40-a)
n nni nj

j 0

SS r r ) S( (r, t ) +jr(r)QnjMt (40-d)

I 0~

Vn(r,t) T + V T (r)Qnjt) (40-b)
j=0

S•/.snCo (rQ () (40-d)
Wnj(r, ) S " tn (r, t n) + rnj •nj

0

Tn(rt) = Ts)-(r,"t) + T (r)Q () (40-c)

0

SWrt(r) O _ 2+ S2 C n (r,) (t) (41-d)

nj arnj( - j r n n

F (r)t -y) - n(S ) Y(r,tA) + -n(r .t) Y (42-a)

1=0

W w.2r( - 2y 2C)C(r, w 4) 2+ :W Cn(V (41-a)ini n nj rnjr j n

V (r) =- 2-C :(r,~ W ) + ) ~C V (r W (41 -b)nj n.1 n nj rn ' j n

The fucton L2COwCf(r,w ) etc ma 2 e covninl -xrse in te(41-cnnjn nj r n

S6(r)W,) J n (aJX( (AY)Cnr -~n J rj~ n(jjn (42-a)

nl n n nj n n

(1)F (Wx'y) j ( WjX)Y'(j y) -J . ) ( Wx) i (42-1))n nnn n

F 3(W, x,y) 4F ,Jn(WX)Y (4WY) - .1 ( jjV)N ( x)', (12-e)

n n n n n

I / (WxW)Y'(J ) J '(WN')N"(WX) n 0

F''(W, X, 0) 0 0T(xY(v '~ Y(L)' (12-d)

n n 20 n 1 l x



where a prime denotes differentiation with respect to the argument Gf the function.

The properties of these functions used in this analysis are given in Appendix II.

The functions appearing in the modal solutions (40) and (41) are given below

explicitly in terms of the cross products of the Bessel functions for the three

casesn=0, n Iandn-Ž2.

For n = 0 the eigenvalues (wo; j 0, 1,2, . . .) are the positive real rootso)

of the equation

DV(w)-= 0. (43)

The functions used in the modal solutions are

Do(() 2y (2)
DO(W) LW F 4 22 F (W, X y)

21 1

2y (3) x,XY) 44'F (4 )(~A), X y) (44-a)
x xy

2yC (, ) Fo1 (u, r, y) + ,2 YF 2 (W, r, y(44-b)
02 Y 2 o

(ro W) 03() ,y ý22F(~ (44-c)

G (W) -![1-2y 2-- )l)Fwx 3)(, I-4y) 4F2
0 2 0 2-J o('xy

gW ,

Wx

4 Y 2 1 -- 4Y F (4)xW, (44-d)
SWxy

2

W (S)(r,t) y 2 r ý (1-Y r
0 2 (5-a)

2) 2(1-V2)(1 2)
x

2

Sor(S) (r, t) r r2 (45-1,)
0 2

2
x

21



2

So (S)(r, t) r (45-c)0 2
1- Y---

2
x

For n = 1 the eigenvalues (waij; j = 0,1,2, . . . are the positive real roots

of the equation

r DI(W) = 0. (46)

The corresponding functions used in the modal solutions are

D1 - --- )(47-a)

S=- ,~" = -(7bI(W 2"1
1 W

C rI)A0 , w) 1 1-A('lr, W) (47-c)

C• (r, W) -LA (r, A) = i *1(r )(7c
C12 "1 6 r 2 "1

G (w) = 273j. - ! w)] (47-d)

where a prime denotes partial differentiation with respect to r and a dot denotes

differentiation with respect to w. A , A A etc. will be defined shortly.

2 2 2,2_n
1 4a 4 2 2 Y

2 2 ,2 32 r2
-2 2 222- 1 2 J'-

x 4 y r 1-Y y

4 n&-33 (48-a)

V~)(,t)-4 2 2 L2~ ) Y2 Inr
1 ' •- 4 2 2 )ln

y Y

x2 2 2 - 2 2
2 y2 •2Y2" ý _1 y 2 r 2

x -' r - 'Y

2In 22 3

22



2 2 + 2 y

x x+y r

seALs(2r-t) 2~~) r+~ X2 + 21L . Z'3- 48d)S 4 a[ y r 23 Y _1

2 2 31 4a L.• y r) 2 2+2 \r3 - JJ(48-e)

x +y r

For n f2,3,4, . .. ,NJ the eigenvalues (cjo j 0,1,2, . . .) are the

positive, real roots of the equation

D n(W) = 0. (49)

The functions needed for the modal solution are

Dn(W) :- An4(w) + (n2 -1)B6,(W) (50-a)

Cn'(r, w) AnD(rco - (n2 _ 1)Bn(r,) (50-b)nn n

C (r, w) A (r,()) + (n2- 1)Bn(r, d) (50-c)n n n

nCr AV/,(r, w) + (n2 - 1)Bn '(r, w) (50-d)

a C
n ' '(r, w) * (n2  n'(r,) (50-e)

-r A n1)B

G n ( W) _ L [ W + ( _( 0 fn 2 n n

where a prime is used to denote partial differentiation with respect to r and a

dot denotes diffel entiation with respect to w. An• A' etc. will be defined

shortly.

Let

a ( x)2n 1 (51-a)

2 
2

23



I y~n~~) (.E)2n-i..~)j (51-c)

d n n -Ix(51-d)

y x

then

xe~ 2 2w(nS)(r, t) en a -n(Iy )-.2y 2lr)n~l

n 4y 2 n L- (n+1)(1_ 2) x

+b (_~n C n)(_)n-1

-d )n(l-y2)+2 2-xyn-l1 (52-a)nL (n- 1)(1-y2) I

V~s) xen ja 2.n+1- 72
Vn (rt) 2 !nr[l)(l2 K)n+1

4y Y n+ )(1 -Y)

-bI.••) n 'v~ C_-.. irn-1

+ dJI21-2 21 (x)n- 11 (52-b)

n~s 2ex nr
-nCn r)n - 2+ dn(n + 2) (xI)nI (52-c)

(S (r,t)- 2

2(52-d)

T(s)(r, t) _ ne n a (rn + b( )~ 2 - _~ -2A _E' (52-e)

24



1The functions AA, AO etc. are given below for n - ( 1,2,3, N;J.

4 2 n n 2 2 2 2 2

2 2 yL"
_2

2 Y24/ 2_1) 4 y 2n Fi(n4 , x, y)F(2) ,(2) w•~ )~l 4x
4 n n

x y

2 4/
_2_ y' 2 F( 3) x )~ F ( 3 )(Wxty+ (3)(W ,y (1(A ,y

4 22 1 2)n n n n y)Fn X,)

x y
(53-a)

2 49 ( 3) w1 4 1 x y
An•r~o)- _4• Fn) x, y)- F~n'. w, x, )

x y

-,• L ~ ~ 2i n r r, y V.~ \"' (- rV)•,-~)

V Xy

T_2 4y •-(3) v (3)(• x (") 2)', r"r()'O
4 " 2 "' 2 - 2n• )(0r n \y " n (y ' ,., - -,,j

4 2

F-1)11- wx, r ) (,., r, y)rld
x 2

2

(53-h)

2 2,U - 01~ ) (W , r,)- F V

2 9 , 2 /lY n n

A ((F• • 2 ) 2 / n \-,xN,) i-q ,n F (, r, y)

V x x

-22

-4 2 2 / -- r,'

.2 (yx( rNX
... . 2 2 L.'n n) n n7r5' 1)•Oxt'

9 
y1

, Y x x

25



T+ j. 2 -n 2

72 4 F( O 4 Y)(n4)(w, x F(n2)• "(3)(' Y)+T1(9,~ ) y) F)y2Lr Y n (w" X' Y)+ 'yr

x y
(53-c)

2y4 4.Fy2(n21) 
.y 2 2 2(

B•w = 4xy2 (27 x y2 y2 x 2)

2 424n2 (n 2-LL 2 2 2:1 _1)+ 4(12 2

+ n 4ynw2 + "

xy y x y x

'F ( 1)]W x , y )'F ( 1)'w In ''Y n t¥ Y)

x42 (n2_ 1) 2n • ]F(4)(wxY)F(2 ) )2- - 2x Wxy
y2 x4 2

x2 L. y 4 y2 n Fn x~

+ 4y (n-1) F( 4)(w,x,y)F((4 ) w, x,y)
x 22 n fl'

xy
+ 2,# 2n2x2  [ ,x Fk2)(W x ". F (2)(w~ xy)FW().,x,

• 2 F(n)(w, x,) (3) n \ , x, y'). F(3) )(w, x, y),-,(l)( x ,
ýf2 ln (y nn (¥ xy ).

X

2 L2F3)(w , x,y)F"(4)(w, x• F((F (4)F(1)( F X, ) ,

x2 nn "n7 Y F n> ( y Y),]

~~([2(X) (4)(~ +)±F(4)(wxY)(2)K wY)

-2 2[F (3 w, x, y) F(4) .Xly () F W
- x2 I n n (, xy )- Fn4) ~)n J'-x~)

(53-d)

B(r 44(3)(Wx, r)- FM) r)]
B n w) 2 x 2y 4 w ,r

- 2 ( x 2 x 2y 2 n2 FW)F(w,r, )y l) x F,

26



2y 2 n2FF(n)("r, y(3) , y)

+ (22_ 2y 2 n2 )F (2 )(wr,y)F -(2) xy)n, n ',1ly
2y2F )(, r,y)Fn ,Xlyj (53-e)rry~n - 2n(2y(3)/ \ r 22-22nF1)

2~~~24 2 (3)F ~,r)+ (a4X2y~ 2_?u
B *(r,w•) 2y Fxy ,•1_ Xx n x,' r)]

n w 2 ,, 2 n y7

- 2y 2~~
+ 2y n2F(1)(--,r,)y F() ,xly)I (3-xn n

- 2y 2 n 2 F l) -, r,y')F(n3)( x y

- 2y 2 F(2)---, F F(n2) (W, x, Y)" n \r, y)n

"" y 2F(2) r )+ n (-y 'Y)F n4)(Wx IY (53-f)

A 2 2(3

2 (W~ 2_4n )F~ (3)(, Y)F x,)

x y

1 (2 _( 3) (2-- 2n2  W x, N,) 4) x

x y

S2 - 2 7 )[F w, r, v) F F (w r v)F n V)
Y x •- n na, , •-,xY i

4 ýw2 y /n F(3 •r') n F -' y

4+4 [-(3). (4)¢ w ,y Fv (4) ( ryF3)ý ,, ]
( wr , ( J r y) Fn F~' n - . F ý Y N

(54-a)
Y2r¢)=• n y 2 -t 2 Y 2 n 2 ,•(2),o w ) 2F(4)';, r

y 2r -• X n \7v x,

2y2n ),(3), n -A' • n +J
- -x - ¢2 y 2 nF(3 ýy) r, v) F ,) x, '

27



22 2 F n n" n \y n d

2 2
+ 2yn Kw2 _ 4  F (3)w ryF() (i,.XY)

x y

+ ~~L~)('A,r, y)F 4(w, x, y)+ F(4 )y, r. jFX

(54-b)
B (r,r w) 12 y4 [ F(n4) (wo,x, r)- F (2)(wo, x, r)

n 2•) 2 4 r 2

•xy~ y F

-n2 (W2 x2_ 2y 2n2)F F(n3)( w. r, y) F(n])ý W, x '
n n \¥ , ,Y)

-2y2 n 2F(3) (w, r, y) Fn (3) , x

22_ 2 2 (4) (24 ( Wx 2y n )F n4 ( w, r, y)F n K ,x,Y)

4 2y2 F(4)(w, r, y) F(4) ,x, v

(54-c)

n'(r') 2 n ! 2 (4)- 2 22 2(2 (2) w
B '(, I)y F'\x, r) (wx -2y 11 )F ~-X, rI22 r • , n T'\y n

S2y n2n 3)• , r , y) -n! ( w, X,

2y2n2 F (3) r,y ) (,x,

-2 2 (4)('w- rv)(2)(a, v
- 2y rFn ,r,y,)F 2  y)r \y /n('x'\')

2y 2F () , ry nF() W Y

2 (54-d)

nx (- " 2 21 1 1 n I (,1)

x ,\
2__ 2 _ _ _

- 2 V22 ') 2)

2w) 4 - L2L i.(] 2)

9 ,(I 23 4 2r--2 X y F( W %

y2 n x

"' 2 n 3 ) 2 2 _ -1 n

x 2
2



+ n.z[l )W (,)

) B (W) + 2w + (55-a)

4.ax2 y TT y x

2 2 ,1)
2[4 3y + Y- .Z8WY n _Li + -L)JF'(wSy2 x y x

2[4y 4n2(n 2 -1) - 4y 2 n22 2 ' 1 1 4'2 2J 1+ n L 2 2 n , w" + - •,x- + Y ' 2(•
xy y x y x

- 4y 4n2 (n2 -) 2 j ,222 1 4 x2 ]p(2,2)(W)
-L 2 2 -- 2 + y2 n

xy y y

- [43 2 - 8),2n 2 -']F•(2, (W)

r4y 4n2 (n 2 -_ 4 2 2 2 1 4 2]p3,3)()

x x

3 2 _ 2 )(3,3)
4 2 - 2w w

4y ( -1'(4. 4)
S22 n (W)
X V

2 (l, (W)f +! -nI- u2 (l
2 n 2 n (W)X X

01,2n 3) ( )) ý - ), 2 n~ 21,13)(

2 n 2 (

8___2 F(3,4) () 4 y j" 2 ( 3 , 4)(
2 n 2 nx X

F(2,4)(• 4r 22 •2_ w F. 4 )W - F( ,4)() (55-I))
2 n 2 n

where

ý(I 22)2n 21))



F
p~l, 3) F01 '4)(W) +F (2 93 3 (W) + F (3 ,3 )(W 2 21y 2n2'Fil

n W ) n F'n F n2w]

,(1, 4) (2,4) (3,4) 2 ( 2) 2 F( (56-c)

22-

2- L ( Y)11F) (, x, y) F3(wX,+Ful'~xY (3) ,
y2 nn Y) n " ) n

2(2,2)(W) 2 IF (2,4)(w) + n2 F01' 2 )(w) (56-d)
n w 22 n

-( 2 1 [ F•'F(2)(w,x,y)F(l) A,,x,Y)+ F`,(l) -x , (F`2 )(W5 - ,-]y

S~(56-e)
ý.(2, 3) ( o) F (2 4(1 F(3,4)( W) 4 n20 1 2) (,32) ( 56-e

nF2 ' 4  ( 3,) n2Ftl' 2)( F ) 1 3 )
w nnn n W

(w)+F (2) () 2
- 2 [-'2.F(2)(w, x,y)F(1)(,' XY 4F(1)( (,yxy)F(w, )(.- xYn)]

2 2
(, x, y) F(I•) xy Y 4 FI)(w, x, vy)F Y,)j49 1 n' n \•-X,

1 j 2 •F22( (' n (56-f)
p(2,4) • (=2 12 - 2n22) n (4,4) 2F(2,3)(5)

n - 2y 2 -n) (W)4F n (W)4 n F n W)

1,4 F 2 2 .. L (2), (3) "w+ n F ( I 4 (W ) -- ,x y)L

nF yx Y -3) (w, x, y) F•2(.'x) S9 . (4)(W x . F W, )• x, Ny)2 2 n n Txy

4 F~l)(Wx,y)F (4) ,x, Y) (35;'-g)
'P 3) 2,1(3,4) 2 3

n - ) , n (0 1 ( )

22W x -L1F(3)(•x,) 1, ,,in)•x\)~:)y \•
2 2~ n (W ,v F ( ') ' W , .. x' .) ( )

(56'-h)
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n2 LY 2"n ""'"n \ Y' )

F22) + ~ 2 (3 3) (44) 2(3

2(wxy)F •), x,y)+ F(4)(w, xPy)01)4 F 'w)n n ýý'22 n(

+ Fn "(x,x,y)(n -- xoy (56-i)2 n22.(• n n(.Y (, v
p(4, 4) (W) 2 n2F(,)() 34 W

[ (4 (2) __ 4 1 F2)" )

2 2

- 2 L2F(n4)(w, x,y)FnF)n ,x,y)4 n(4Tx,y) F n)(w, x,y)j

(56-j)

where

F~i (W [()j,x,.,F(j) (W px, Y"
Fn' 2 n' .oxyn '

0 xiý ,A) F )(),,,

The completes the analytical solution of the equations of the three dimensional

theory of elasticity for the stated problem. In the next s-ction some observations of

the form of these solution-s will be offered.
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* IC. Discussion of the Elasticity Solution

The most conspicuous attribute of the solutions given by (17), (18) and (40)

is their double series form. The sums shown in (17) and (18) are over all angular

harmonics (ni) contained in the load representation. Since the load, by earlier

agreement, contains a finite number of harmonic components (N), the sums (17)

and (18) are finite. However, from (40) it is observed that each harmonic com-

ponent or mode of the response is itself an infinite series. To establish the con-

vergence of these series a brief study of the asymptotic behavior of the characteristic

values wnj and the characteristic functions Wni, Vnj etc. for large values of the

summation index j will nc-.v be presented. The following results may be deduced

from the asymptotic behavior of the cross products of the Bessel functions for

large values of w given in Appendix II.

D ) sin aw (57-a)

I/-v

DI(w)- -,y sin aw sin -i_-, (57-b)XY Y

2
D (W) -.-~- - sin aw sin n n> 2 (57-c)n XY ;

Since the characteristic values w are the roots of the equation Dn(W) = 0 we

conclude from (57) that

KrT

W)j - K = 1,2,3,... (5R-a)

ITT L•r

unj - Y --5-- ; (K, L) 1,2,3,... (58-k)

For any given value of n, the integers K and L are linearly related to j for all

j above some minimum value J(n). The formulae (58) will he very useful when

calculating the characteristic values numcrically. Gazis t 71 also obtained the

relations (57) in his studN of hollow cylinders. Using thest, approximations for
3;2



Wni the series (40) are found to behave asymptotically for large j as follows.

Forn= 0,1,2,...

(t (-1K+I

nj(t)Q nj • 2 r K2  cos -a(r-Y)cos t (59-a)
2• --tK (59-a)

s r (r)QnM t)" _,)K sin -T-(r-Y)cos _KT t (59-b)
(t) nj 2T rj KK KC

S.(r)Q (t)K sin -(r-Y)cos -t (59-c)
nj nj TT r • iK •(_~o C-L

For n = 1,2,3,...
LcL2n X (-I) K+I r{I-Y

nn3 r K3  ar

+Ys in Kr Cos !-L(X-r)+(_l)K C.os.• (r-y Cos -•--t

or

V ( ) Q X - 1) L + 1 - CSrT X r
nj (t) 3 nY3y L3 siny 1 Xr Lo

i cos yL7s CL (r-Y) cos y L- t (59-d)

4ty2 K{~ I
nj)nJ 2 r K2  r cos

si • •sin (X-r)4 si 1-L (r-Y Cos -•tsi LT 1 Kr K L a~t

or

Tn.(r)Qn.(t)- y /X (-1)L l 1L
nj fJ 2 r L2  slnyL-r sin -•--(X-r)

L cosy L7sin- (r-Y) cosy t (59-e)
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In each of the above expressions the first term occurs at the roots and the

second at y

We may conclude from the above asymptotic relations that all the series

in (40) do in fact converge for (Y .' r ' X).

In addition to verifying the convergence of the series (40), the relations

(59) also provide a useful aid to understanding the nature of the solutions. For

example, it is noted that all these relations are either of the form e t)

or eK. (r-Y O yt) Both represent traveling waves having in the first case a

unit phase velocity corresponding to the dimensionless dilatational wave speed

and in the second case a phase volocity y corresponding to the dimensionless

shear wave speed. rherefore, we may interpret (59-1,c) as yielding discontinuous

dilatational stress waves in Sr(r,t) and S a(r,t). Thesc oiscontinuities or steps
n n1

in the stress are the result of the dilatational wave produced by the suddenly

applied load being reflected between the boundaries of the shell. From (59-e)

we see that the modal shear stress is composed of both dilatational and shear

waves, however theN are, continuous and in the form of a ramp function rather

than a step function. This is to be expected since there are no discontinuitles

in the shear stress introduced at the boundaries as was the case for the radial

stress. From (59-a) we observe that the radial displacement is continuous and

dependent primarily on the dilatational wave while the circumferential dis-

placement (59-d) is dependent upon both the dilatational and shear waves.

At this point it will bc convenient Lo consider the practical computation of

the series (40) in a specific problem. Since these series converge at least in

the manner of a step function, they may be terminated after summing some

finite number of terms to obtain an approximation o" the desired function.

,Just as in thl' load representation, the Lanczos smoothing process may he

applied to thes(,e linite stms to inereasc the' accuracy of the approximation.

:3',



This process, as explained in Appendix 1,v will result in each term of the sum

Kultiplied factor K sin - where j K is the last term

retained in the sum.

It is interesting to note that the form of the solutions (17), (18) and (40)

is exactly the same as would be obtained by solving the problem by the Williams

or mode acceleration technique [ 37]. In this context the terms W V(S) etc.n n

are referred to as the "static" modal solutions, the w are called the natural

frequencies of the system and W., V., etc. the eigenfunctions of the system.

In fact, for the suddenl. applied load the "static" solution is the solution of the

corresponding static problem in which both the equations and boundary conditions

are independent of time.

This concludes the anal\tical investigation of elasticity theory and we

will now proceed to exawine' a specific example for the comparison of the

theories.



IV. A NUMERICAL EXAMPLE

In order to obtain a better insight into the nature of the elasticity solution

and also a clear comparison with the shell theories a specific shell geometry and

load distribution will be studied. An interesting example which also has phys.cal

applications is the suddenly loaded cylindrical arch shown in Figure (1-B). A

radial load of constant intensity P0 is suddenly applied to the outer surfac,- at

(-< < 0) of a cylindrical arch whose ends at e = + - are free to move hori-

zontally on frictionless rollers but restrained from moving vertically. The

proper boundary conditions at the ends are v - T'r 0 at 0 = •: 2-. This problem

is analogous to the problem of a complete cylindrical shell of identical thick-

ness and material properties subjected to the same loading as the arch plus

the symmetric reflection of this load about the 6 - +;7 planes. In this com-

plete shell, because of the symmetry of the load, v - T r O Oat O . ±- The
rO 2

proper load distribution function for this example is therefore

g (e ) : , '0 : i -1ý -1 , - ' 1 ,

The Fourier coefficients of this function are

ao 4$

a - sin no n - 2,4,6, .nn
an 0- n -1,3,5,...

bn 0 n 1,2,3,...

The thickness ratio used in this example is -t 0.1. The only material

property required in the analysis is Poisson's ratio which was chosen to be

V - 0.3 from which the wave speed ratioy Z 0. 5315 ma%) be Obtaine(d.
36
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I
The solution of this example by the shell theories is given in Appendix MIT.

Next the angular extent of the load ($ and the number of terms (N) u' ,I it

the load representation must be chosen. In order to detect all the peculiarities

of each theory and to emphasize the possible differences I'-ltween the theories it

is desirable to choose $ as small as possible. However, as $ is decreas.,d 1u.

number of terms (N) necessary to obtain a reasonable approximation of the load

increases very rapidly. Therefore some compromise must be made to obtain a

sufficiently concentrated load representable by a reasonable numnber of terms.

After studying several different load representations it was decided to choose

0. 1 with N - 100. The load distribution function gN(O) is shown in

Figure ('-, .ji these paramleters.

Having specified all the load and shell parameters we may now proceed to

the actual computation of the solution. First the natural frequencies must hN'

found for each theory. For the shell theories this is a straightforward com-

putation which involves finding the roots of a quadratic polv'nomial for th,. Ilg•.

theory and a cubic polynomial for the improved theor., for each harmonic n.

However, for the elasticity theory this involves finding the roots of the trans-

cendental equation Dn(w) - 0 for each harmonic n. If approxima•ite values for

these roots are known they may be used as starting values for a first order

Newton-Raphson iteration scheme to obtain the natural frequencies to anY'

desired accuracy. The asymptotic relations (5s) may\ be used in this pro-

cedure as follows. For each ,alue of n, Dn(,() is plotted forw. 0 until it

is noted that the roots are obeying the asyriptotic formalac (5s). The starting

values for the lowest roots are then obtained from the plot and the starting

values for the remaining roots are obtained from the asymptotic lormulac,

Table (1) lists some of the starting values for the first few harmonies an(]

indicates when the asymptotic relations become valid by using the appropriate

asymptotic formula from (58) rather than its numerical \alut,.

3



F
TABLE I

Wnj

STARTING VALUES

n 0 1 2 3 4 5 6

0 0.90 2: 32 4Z 5' 6E
"a a a aý a

1 1.27 Y_2 2yy2 2- 2 4y
a a C

2 0.06 2.01 7- -Y 3yi! 22C ay a a a

3 0.19 2.84 Y- 2y2 3' 2-1
a a at 3. a

4 0.37 3.70 Y.: I 3' r 2-
aa C a. a

All the larger values of n follow the pattern set by n - 2,3 and 4, however the

value of j at which the pattern becomes evident increases as n increases. This

presents no difficulties since the starting values for n - 6,8, 10, .. 100 may

be computed from a difference scheme as follows.

nj ý n-2, j ' (Wn-2, j"- Wn-4,j)

In this scheme W n-2, j and w n-4,* are the correct frequencies obtained from

previous calculations and Wnj is the starting value for the Newton-Raphson

iteration. The difference scheme was formulated to compute only the even

harmonics since the odd harmonics are not used in the present example. Using

this procedure to generate the starting values, the natural frequencies were

obtained to eight significant figures with usually no more than three iterations.

Note that the j = 0 root for n = 1 seems to belong with the j ý 1 group of

roots for .he higher harmonics n = 2,3,4. This occurs because the lowest

frequency for n = 1 is w = 0 which gives rise to the rigid body motions already

SW(s) and V1() equations (48-a,b). Therefore it is absent from this

Table and it is not a root of D (W) 0.
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TABLE II
CONIPARLSON OF NATURAL FREQUENCIES

Elasticity Improved FlMgge
N j 'heory Theory Theory
0 0 .90.15:1 .90388 .90:188
0 I 31.4 3019
0 2 2.8:1898
0 :1 9.1. 2525:1
0 .I 125.66727
0 5 157,082418
0 G 188, 49793
2 0 .069641 .0(6957 .06997

2 1 2. 0148:1 2.01519 2.02061
2 2 16.9,1201 17. :1:3108
2 :3 :11. 26898
2) .1 :133. 81500
2 5 50.3:8530

2 G 62. 87608
• 0 . 37019 .36970 . :179,12
1 I :1. 70998 :3.71459 3. 72648
.1 2 17.28616 17. 69410
1 :1 30. 90754

1 5 50.37718
4 G 62.98677
6 0 .85090 .84940 .90011
6) 5. 46350 5. 4794:3 5.49793
6 2 17. 83:391 18. 27:120
6 31 30. -19687
6 ,4 :15.01135
6 5 50. :3657:3
6 6 63. 16919

10 0 2. 2263,1 2.2197.1 2.56819
10 1 8.97353 9. 05096 9.08409
10 2 19.41665 19.95633
10 :8 29.76484
10 .1 36.60387
10 5 50.3,1532
10 6 63. 7:1688
20 0 6. 9:1539 6. 89078 10. 38735
20 I 17.21.116 18. 0175:3 18.10:186
20 2 24.97077 26.03038
20 :3 29. :17554
20 4 4 1. 3:33741
20 5 50. 514415
20 6 66. 13638
50 0 22. 93459 22. 68683 -15. 16705
50 1 29. 62:10" 44.74099 65. 1910:1
50 2 -12.05902 -19.85375
50 :1 4R 12222
50 .1 57. 8681:3
50 5 58. 32040
50 6 7:1. 89630

100 0 '18. 01206 418. 37416 90. 35017
100 1 51.48581 88.61057 260.79596
100 2 61.83290 9,1.47102
100 3 73. 38704
100 4 84.79185
100 5 9:1. 98815
100 6 102. 16473
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A partial list of the natural frequencies predicted by both the elasticity theory

ind thi shell theories is given in Table (2). Only even harm9nics are shown since

the odd harmonics are not used in the example. Note that the lowest frequency is

W2, 0 indicating that the shell offers the least resistance to motion in the n ý 2

mode. Since the n = 2 mode is also prominant in the load representation we

expect this to be the dominant mode of response for the shell in this example.
2-" -.

The period oI the response in this mode is T - 2-' 0 90 dimensionless units

of time. Next observe that the frequencies predicted by the Fl.gge theory are

consistently greater than the corresponding frequencies predicted by either the

improved or elasticity theories with the exception of n - 0. For n - 2 the lowest

frequency predicted by the Fl-gge theory is only 0. 475%, greater than the lowest

frequency predicted by the elasticity theory, however, this difference increases

as n increases so that at n ý 100 it is 87. 5((. Therefore, the FlU.gge theory should

satisfactorily predict the response caused bly the low harmonic components of the

load. This characteristic will rapidly deteriorate as n increases. On the other

hand, the lowest freouency predicted by the improved theory is always within 11,'

of the corresponding frequency predicted by the clasticity theor. for the range of

harmonics covered by this Table. Therefore, we maY expect the improved theory

to satisfactorily predict the response caused 1).\ all the harmonics in this example.

One of the most obvious differences between the theories is the number of

frequencies associated with each theory for the various harmonics. In the

elasticity theory a complete set of radial eigenfunctions and associate eig'en'Valu,,s

(frequencies) is required to represent the prouer radial variation of the response.

The shell theories on the other hand, only represent the gross effects of these

radial variations for any position 0 on the shell. Since for each harmonic, except

n : 0, the response is due to the combined effects of shear and dilatation, the

elasticity theory contains two sets of frequencies, one associated with the

-t1



dilatational effect . . ,. aihd one associated with the shear effect

Y ). The FlUgge theory approximates on1. the lowest frequenc\

from each set (w no, • nl ) while the improved theory includes also th second

frequency associated with the shear effect (w no'9OWl, 0n2).

When computing the response predicted by the elasticity theory for each

harmonic, the series will necessarily be truncated after summing a finite number

of terms. From (59) we see that at the boundaries (r - X, Y) all the series converge

uniformly for all t. However, for Y< r< X there are step functions or (ds-

continuities in the radial and hoop stresses which periodicall, recur with period

t = 2a at any giver, value of r. To accurately represent these step functions the'

series will be summed with the Lanczos smoothing factor up to and including the

K= 100 term. This corresponds to suming 0!5 j ! 100 for n - 0 ,"ad 0< j - 2ý,S

for a - 2.

One further interesting feature of the response may be deduced from this

Table of frequencies. It may he shown r 34] that for improved theory for large n

Wnl- 0. .196n

Wn2 0. '7tn

Wn3 "0. 929n

while for Flgge theory

Wnl - 0. 0261n"2

W n2 - 0.9035n

If we simultaneously examine the anigular and time dependence' of the responsc' for

anr' value of i it is of the form cos w .t cos n 0 which a\ hee ý ritt.n as
W '.

cos n(9 n -__ t). In the improved theory for an% value of , - , V h•h ,',
Vj is a constint so that the solution is a sum of harnioac c Otpontt.s ,,t chr

form cos n(9 - Vt). This represents a wave propagatin. arwig nd thf ( r•'t n iitvn,,ne

ofthe sheil with phase \elo0e't\, V. Thus it is possi in' ti , e 1 ,1 , hi till ! tht ',r" t,

observe 'wave p)henomlenla related to the angullard cor ina" llt mt ')t'' th' 111c li!

12



coordinate. In the Fligge theory . .. . 0261n so that the harmonic components
n

of the response are now in the form cos n(O ± . 0261nt). Since the phase of each

component varies with n, the high frequency components will be out of phase with

each other and a traveling wave will not be observed.

The elastiticy theory frequencies listed in Table (2) were checked, when

possible, with those given by Armenakas, Gazis and Herrmann [ 19] and com-

plete agreement was found. The asymptotic relations [ 58] were derived earlier

by Gazis [ 7] and [Il] and further discussion of free vibration characteristics

may be found in references [6] through [ 19].

We now bave all the information necessary to quantitatively compute the

response of the shell predicted by each of the three theories. The results of

this computation are presented in Figures (3) through (15). The comparison of

the theories is shown for the radial and circumferential displacements at the

median surface of the shell (r - 1) and for the hoop stress at the inner and outer

surfaces (r = 0.95, 1.05). The radial and shear stresses predicted by elasticity

theory at tne median surface (r = 1) have also been computed.

A comparison of the static solutions is showa in Figures (3), (4), (5) and

(6). Note the excellent agreement between the improved and elasticity theories.

At their maximum values the improved and " ist city theories differ by less

than half a percent in these results, howe%. ,,, 'Fliigge and elasticity theories

differ by five to six percent. The maximum stat, radial displacement occurs at

9 0. The madxinuin static tangential displace: ,, t occurs at 6 0. 76775 and the

maximum static hoop stress occurs at 9 - 0, r 0.95. At any given value of r

and 6, the maximum value of the dynamic response is expected to be twice the

static value (see F4], pp. 181-182). Therefore, the displacements and the hoop

stress predictcd by the three theories in the dynamic case will be compan'ý -,

the values of r and 9 given above.
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The static shear ancl radial stresses predicted bx the elasticity theory at

the median surface ( i, - 1.00) are shown in Figures (7) and (•). The maximum

stress occurs in both cases near the edge of the load at 0 0. 14715 as exp.:,,teci.

The maximum magnitude of the hoop stress is seen to be twenty times greater

than the maximum shear stress and forty times greater than the maximum radial

stress. This provides justification for the usual assumption made is shell theory:

the radial stress may be neglected compared to the hoop stress. We will now

proceed to examine the dynamic response of the shell,

Figures (9) through (12) depict the initial response of the shell. In this

very early stage of the response the various stress waves may be observed as

they propagate through the shell and are reflected from its boundaries. The time

history of the radial stress at the median surface directly beneath the load is

shown in Figure (9). The events depicted on this graph may be explained as

follows. At t - 0 the radial stress at the outer surface is discontinuously

changed from zero to minus one. This discontinuity in the radial stress pro-

pagates as a compression wave into the shell with unit dimensionless velocity

(dilatational w\,ave speed). At t .5 - 05 we observe this compression wave as

it passes the median surface. At t z- - it encounters the inner surface of the

shell and since ttiis sueface is stress free it is reflected as a tensile wave which

is observed as it passes the median surface at t -- 0.15. At t 2) this
2

tensile wave encounters the outer boundary from which it reflects as a com-

pression wave. This phenomenon is repeated periodicall\ with period T 21.

The time histor, of the stress at the median surface becomes more complicated

as each wave passes and adds its effect to those of the previous wa\ves. This is

the reason for the changing form of tie response, curve in Fig-ure (9).

Figure (10) shows the shear stress predicted by elasticity theory at the

median surface of the shell and at the edge of the applied load. As predicted

t14



earlier, there are no discontinuities in the shear stress, however, the various

waves may still he detected since they cause discontinuities in the slope of the

curve. At t a 0. 05 we observe the dilatational wave and then at t -

0.935 we observe the shear wave as both pass the median surface. Then again

at t = 0. 15 and t -0. 187 the dilatational and shear waves reflected from the

inner surtace are observed.

Figure (11) depicts the time history of the hoop stress at the median

surface directly beneath the load nt A- n A comparison of the three theories

is presented on this plot. In the elasticity theory the dilatational wave is

observPd as it .s reflected between the shell boundaries. As noted earlier

this wave cannot be predicted by the shell theories; however, they do accurately

characterize the average value of the stress.

Figure (12) shows the hoop stress predicted byv the three theories at the

inner surface of the shell at e - -. Because of the wave character of the

elasticity theory, no response is observed until the dilatational wave originating

at the edge of the load reaches this location on the shell. This time interval is

approximately t -1T 1.47. Similarly the improved theory contains waves

traveling around the shell with phase velocities V1  0. 49f, V9 - 0. 878 and

V3 7 0.929. Therefore, there is no response observed until the fastest wave

V3 passes this point on the shell. This occurs at t V - 1.58. As indicated

3 ~V 3
previously the Fltigge theory response is not entirely composed of traveling waves

and therefore it predicts an immediate response at every point on the shell.

Figures (13) through (15) show one full pcrxI of the response predicted

by the three theories. The radial and circumferential (lisplacenlents of the

median surface of the shell are shown in Figo-ures (13) and (1 1). Note the

excellent agreement between the improved and elasticitk theories. In both cases
[

they differ by less than half a percent in the \vi('init\ o! the nmaxi mum. The

15



Fliigge theory however, differs from the elasticity theory by approximately seven

percent in this vicinity. The static solution predicted by the elasticity theory is

aiso shown on these graphs and, as expected, it is approximately one half of the

maximum value of the dynamic response. Also, the period of the motion is seen

to be T = 90 as prf 4icted.

Figure (15) shows the hoop stress at the inner surface directly beneath the

load predicted by the three theories. Again the agreement between the elasticity

and improved theories is excellent both in magnitude and form. Since the response

predicted by the Fligge theory is slightly out of phase with the other two theories

(the Fliigge theory predicts a slightly faster response) there are large differences

between the theories at any given instant of time, however, the maximum value

predicted by the Fliigge theory differs by only nine percent from the maximum

predicted by the elasticity theory.

The radial and shear stresses were computed for one complete period of

the response and their maximum magnitude was found to be, as in the static

case, less than four percent of the maximum hoop stress. Thus the assumption

made in shell theory;, i.e., the radial stress is negligible compared to the hoop

stress, is also valid in the dynamic case.

This concludes the study of the specific example. The principal findings of

this invesdigation Nill now be summarized in the conclusion.
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V. CONCLUSIONS

The principal findings of this investigation will now be summarized. There

are three convenient stages of the response for which the shell and elasticity

theories have been compared. First, there is an initial response in which the

dilatational and shear waves transmit the effects of t1 e loading to the various

points in the sb,.l"l and the radial variation of the response begins to develop.

Neither of the shell theories can accurately describe the details of the response

during this earily period and the elasticity theory must 6c employed to observe

this phenomenon. The period of the wave phenomenon occurring during this

initial response is T 2 1 which is the time required for a dilatational wave to

travel from the outer surface, to the inner surface and then back again to the

outer surface. The corresponding, period for the shear wave is T V

The second stape of the, resIpo)nse, consists of the effects of the' load being

transmitte,! around the shlell in the, circumferential direction. The characteristic

periods of the response produced ihv the dilatLtiona! and shear wvaves in this

stage are appipoximatcl T 2 - and T A..\s shown, the' improved theory)

does provide a good approximnation of this ,ispect of the response- with the'

periods being slightl\y lar-er than thosev pi'(I i 2t,,d Ih\ elasticit\ thory'. Ilo (we, r,

the Flfigge theory cannot characterize this aspect of tlh(, respons, ;,ceiste' of

the nature of its frequency spectrunm.

The third stage of the response contains the naximnum displace(ments and

stresses occurring in the shell tor all time. (0)n( con•pl)ete pe riod ol the( re'sponsc'

occurred in the inte rval '1 2 'her ) o was the( lo\e(.st t're(qtle e1\ pre tuct,

by th(" various theor( S A...\s 'xl)lainl(l earlielr the. 11 2 mo(iV is the h, iinllepal
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harmonic component of the response. Since the Flfiggr, theory very accurately

characterizes this mode of response, the results predicted by the Flgge theory

are surprisingly good. The inaccuracy in the Flifgge theory characterization of

the higher modes contributed to a total error of less than 10( in the maximum

hoop stress and even less in the maximum displacements. Ilowe;cer, the improved

theory is still far superior to the FlUgge theory because of its accurate characterization

of the higher modes. Thus the error in the improved theory was less than 1/2§/ in

both the maximum stress and displacement. Also it was seen that the 1'lWgge theory

always underestimated the maximum stress whereas the improved theory provided

a slightly conservative estimate.

If the applied load is modified in such a way that the relative importance of

the higher modes is decreased the Fltgge theory maý be expected to yield an even

better approximation of the overall response. This would occur if the load were

applied at a finite rate, if the angular extent of the load were increased or if the

load were distributed continuously over the shell surface. On the other hand if the

load becomes more concentrated the error in the Flhigge theory response will

increase. 1l1o(mver, sinze the relative difficulty of both shell theories is about

equal compared to elasticity theory and since the improved theory, Yields a closer

approximation to the actual response, the irnproved theory must he lu(dr! to he

superior to Flugg'le shell theory.

One further factor to be considered when comparing the shell theories to the

elastici-,' thor' IS theW COmp)utation time necessarm to obtain the solution. All

computations !or the txamplh, p resented were prograninmed in Fortrai, IV on a

CI)C 61400 ('&)i)lite r. The conml)uting timie required for each shell theor.\ was

approxinmate I tee win lutes, however the computing time' required for the

eaIasticitý thenr\ \%:is app royinlatc, iour hours. Flasticit.\ theory required a

gre ater ,I oulit ()I t nillec 1(-,IuLS( Of the lu n hbe r of te rnis sumnme( in) the series for

'; 1

L o



each harmonic to obtain the initial response. If the initial response is not desired,

considerably fewer terms may be used in these series. However, the computing

time will still greatly exceed that required by the shell theories because the Bessel

functions involved in the solution require more computing time than the algebraic

functions involved in the shell theory solution. Thus if the initial response is not

desired, this consderation represents an additional advantage of improved shell

theory.

In conclusion, it appears that improved shell theory is the superior choice of

the three theories in terms of the trade-off between accuracy and analytical com-

plexity if the details of the initial response are not required. If the initial response

is desired elasticity theory must be used. We also note that there are several

shell theories which are similar to FlUgge's theory. Thus it may be expected that

the present findings with respect to Fligge's theory are also applicable to the shell

theories of Love, Donnell, Vlasov, Sanders, etc.
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APPENDIX I:, LANCZOS' SMOOTHING TECHNIQUE

The accuracy of the approximation of a function over some interval by a

truncated Fourier series may usually be increased by applying the operation of

local smoothing to the function being represented. This procedure along with some

illustrative examples are presented by Lanczos in his book on Fourier series

(1 38], pp. 61-75). The cr_-1 of the method is the replacement of the original

function by o, whuich is locally sm,)oth. For example, suppose we wish to

represent the function f(X) defined over the interval -L < X < L by a Fourier

series which has been truncated after the Kth term in the series. Then

Ka
fK(X) = + (aj cos W X - b1 sinw X)

j~l
where a , a. and b. are the Fourier coefficients of f(X) and ,J L_7 Consider a

new function T(X), derived from f(X) as follows.
,-r

WK f f(X 4Y)d Yf(X) - 2ý fXYd

'WK

The following conclusions may be obtained through the application of the mean value

theorem to the above integral. If f is continuous at Xo, then lim [ lia f(X)l =- f(X0).
X-f X K-4 3

If f is discontinuous at Xo, then lim [ lim T(X)] -f' f- where
0 X-4X K-+ 2 whr

400
':' -4 0 ý"" -4 0

smoothing procedure has very little effect on f(X ) if f is continuous over the

interval (X- - X X -). ,However, if f has a (liscontinuitN at X,
0 )K 0 K
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the discontinuity will be smoothed into a rapid but continuous change. The truncated
Fourier series approximation of this smoothed function may be obtained by sub-

stituting fK into the integral definition to obtain.

KfK o - oK o .TTS1 sin (a COS X-b sinKX)

j K

The accuracy of tl,,s approximation of f(X) is better than the truncated Fourier

series at all points except those in the immediate neighborhood of a discontinuity.
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APPENDIX II: CROSS PRODUCTS OF BESSEL FUNCTIONS

The properties of the cross products of the Bessel functions defined in

equatioi_. (28) and (42) are listed below.

For 0< X< m, 0< Y< -, K = (1,2,3,4) and n = 0,1,2, ...

(1) 1(K) (P,X, Y) are entire functions of Pn

(2) W()(_p,X,y) = p(K) (P,X,Y)
) n n

(3) F(K)(iWX,y) = -- F ,X,Y) (K,n) (4,0)

where i = J and w is real.

P-0o n 2n

P- lim p(2)(pxY =n f21 '\n-- +

lrn F' (P,X,Y)= L +P-4 0no

lir F ((PX,Y) =- [ )n+ - n , nJ 0P-+ on2 Y

-im f(4) (P,X,Y) " [2i X xj]

P-40 0 2 LY X

(5) As P- 4 the functions behave asymptotically as follows.

-11) 1 1
n (PX, Y)-- - p- sinh P(X-Y)

p(n2) (P, X, Y,- 1F 7 cosh P(X-Y)
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p3) (PX, Y) - cosh P(X-Y)

(n4) (PXY) -. -/-XY P sinh P(X-Y) ; n• 0

) p sinh P(X-Y)

(6)

(a) For n = 0

F(1) ((w,X,Y) = [2)(,XY) + F(3) )]

)- -F )(2),X,Y) =WY XF '(w•x) -YF (1)( w X Y-W o ,X0 1( ,X '" -, 0 f I )

SF3)(3,X,Y) YX[y(4))(w,X,Y) - XF(1) (w, X,Y)]

-- XY) -2L F()(wX, Y + 1 F(3 )(wXY) + 2F(4)(w'X, Y)]

(b) Forn = 1,2,3, ...

-Fm1)(w,X,y ) [F( 2)(wxY) (3)(+ w X, y)]

.T-- n w n ' '

- (2) (W ,X, Y)=--] ,,(4)n (WX, Y) 4 (n2 2y )F(l)(wX, Y)]

a F(3) (wX,Y)= I[F(n4)(w,X,Y) (n2 -w 2 X2 )F(n))(w,X,Y)

F(4)(, [2 )2_-n 2 (•F - 2) X (2y2 n2)F(3)(wXy

Tw, F n(w, X,Y) - n) ~X)) wY

(7)

(a) For n - 0

a F(l ,X,Y) - -2 y F(34)(w,,X,Y)

o 0

FTY ) (wJ,X,Y) 4 -F (2(,X,Y)
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LF(3 ) (w, X, Y) = 2XF(4),XY)
)y o 0 (''Y

(b) For n = 1,2,3, .

F(1) 1X F(3)(,Xy
SX X (w, XY)

SF(2) 
(w ,X , Y) F (4) (-,X , Y)

a F (3W,X,Y) 1 (w 2 2 ) 2

SWXY) n2)F (,X, Y)
Sb---X n Y) n •X •XY

(nl)( , X, Y) Fn (2) ,Y

F(3)(1 (n4)(

ý---- n ( ,X, Y) F (F w, X,7Y)
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APPENDIX III: SIHI LL THE'ORY SOLUTIONS

The response of a cylindrical shell in planc strain produced by an arbitrary,

radially directed load P(6,t) is given in £ 39], p. 22 and 7, 34J, p. 297, for both the

Fliigge and improved shell theories. In terms of the nondimensionalization used in

this study these solutions may be rewrittrin in the following form. For thv Fligge

Theory:'

N 2
L- n, LAinFin(Olt)

w(e,t) - - L- Fjo(t) f L A.
n-ln l

N 2

-v B. . (,t
-t 1 n- in nintin

n li-

•O~~r',O~t2 L r' lv 2 0

N 2

- l(Ain till n -in
fl 1 i 1

For the Improvcd Theory:'

N 3
w(V,t) - I77q L2 F1t L A. F. (8, t)

n 1 1 n

N 8

v(O,t) - n L /4  1- InBini (n(,t)

-X ii 1M
•0(r,0,t)T -x l 2 L.2

N .3
ln(,,iA. nB n( r'-l'C )'Aet)

t) In.. . Ill in iin



where

Fit)- P( ,T )sin 0o(t-, )d' dr

0 0 -TT

•:F. (6,t). f i - p( , T) cos n(e- ',)sin i(t - ')'J'. dr

in( I) = • )I in(t- din 0 -7

G. sin )Si ft )sin(Tin~e t)(.= 'Win Of(_ 7 Win'..(ttd dr

n n -N• -r
n•. N l2

in (1-v) in 1 o_ (1-V) 0

For the exampli discussed in Section IV P(9,t) = g(8)H(t)

where g(-O) =-g(e) p0 . <0 1r-O

Therefore, for this examp1e

r I - cos wot
F o(t)4$1L 2

Fi6O,t)- 4 sinnocos; - ', n - 2,4,6....
ni WOin

4 .1 -Co~s Wnt

G. (, -4 sin no sin nO -9 n n - 2. 4, 6,in n L "
in

F. .G 0 , n -- 1,3,5..17 in

The rn(,al coefficients Ai n13., C. rind the natural frequencies in as-

sociaked with cach thfioy are given below. For the Fl,{gge theory.

% / /-,,
o 12 nr)' 2 d 2n
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1n 2 x ) I 2n x 2 x
n n nn' x n 2n Xn 1n

BBln \n---X , B2 n: zBn
ni

=1n a 2 (21)2 /I a2n2(n2_U2
)' n -1) , Xn= 1 .. 2 "

For the improved theory:

o 12 "n" /in

1 k4 2
Ain- d i-'n- [ n a a2nf Ri , a nglnl

B. -- a 2 g _
in di in $in i I n in]

c [ag-a 42in d.in 6ngln- 7n R'n

din. i[fi,n- �fln /+ 2 ,fn" in MOD (3)

2 2

891 25 7-',T-4P-,' ]

51
2 - 0

2 1 2'i-j)--
'/n 1 rl -2X co)s n'2 -1 )

in 3 2 L - 2X3,)"

X n 1-3g.

•. t {,. Li - !'-r -{; I {,,,, -

2 --(I -2
2 iI.

2



2 2 OlC2
"a n (2+K23(I + K2 2

g2n 12 (12+2K (1 + 12

2 a2 2 a2
+ K (1+ 2K2)(1 a2

g~n 12 4

a2
g4 2 -(1 + -12-n2(1,+- -

2'
glng3n glng4n

5n 2 ' g6n= -
g2n g2n

Sa 2 K2  2 4

3 - 1 2K2 2 1 a4

12 x1 aI--'42+ 2 + 2 4 2

2
.5• ) ( I+K 2 2 2

X3 =K2•1+2K2 / k- K2 -6l2-o

" 22 2

22 +2K ,2 4 2 12
an3 1 2 + K

2

a K2  a 2
a3n 12 -T)n(I 2 -)

2 n 222 a2
a 4n n L -1 -2 , K_ - -212 / -- 2 , -22 2
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I " 2
K:- 2i K where K is the Mindlin shear coefficient. K = 0.86 in the

cxample of Section IV.

72



V

REFERENi ES

[1] Navier, "Memoire sur les lois de 1` eqiuilibre et du mouvement des corps

solides e'lastiques" Paris, Memnoires de lV Institut V.VII (1827) pp. 375-393.

[2] Pochhammer, J.f. Math. (Crelle), Bd. 81 (1876) p. 324.

[3] Chree, "The equations of an isotropic elastic solid in polar and cylindrical
coordinates, their solutions and applications" Trans. Cambridge Phil. 6oc.
14, 250, (1889).

[4] Love, A. E. H. "A Treatise on the Mathematical Theory of Elasticity"
Fourth Edition, Dover Publications, New York.

[5] Kolsky, H. "Stress Waves in Solids" Dover Publicadons, New York (1963).

[6] McFadden, J.A. "Radial Vibrations of Thick Walled Hollow Cylinders"
J.Acoust. Soc. Amer., V.26, N.5, Sept. 1954, pp. 714-715.

[7] Gazis, D.C. "Exact Analysis of the Phane Strain Vibrations of Thick
Walled Hollow Cylinders" J. Acoust Soc. Amer., V. 30, N. 8, Aug. 1958
pp. 786-794.

[81 Greenspon, "Flexural Vibrations of a Thick Walled Circular Cylinder"
Proc. Third U.S. Nat. Congr. Appl. Mech.,June 1958.

[9] Greenspon, "Flexural Vibrations of a Thick Walled Circular Cylinder
According to the Exact Theory of llasticity" J. Aero/Space Sci., V. 27,
N. 1, Jan. 1960, p!). 37-40.

[10] Bird, J. F., Hart. R.W. and McClure, F.T. "Vibrations of Thick-Walled
Hollow Cylinders:. Ixant Numerical Solutions" ,J. Acoust. Soc. Amer., V. 32,
N. 11, Nov. 1960, pp. 1404-1412.

[111 Gazis, D. C., "Three-Dimensional Investigation of the Propagation of Waves
in Hollow Circular Cyhnders:. Ptrts I and II" J. Acoust. Soc. Amer., V. 31,
N.5, May 1959, pp. 568-578

[12] Gavrilov', "Deterzuination of Frequencies of Free Vibrations of Elastic
Circular C\,lindriea1 ,iclls" Izv. Akad. Nauk SSSR, Otd. Tekh. Mekh.
i Mash.,, N. 1, Jan./, 1 oh. 1961, pp. 163-166.

[13] Greenspon, "IiI'rt1,,,w, of Thick and Thin Cylindrical Shells Surrounded
hy Water",l. Acoust Soc. Amer , V. 33, N.,10, Oct. 1961, pp. 1321-1328.

7 1,1] Ierrniann, G. and Mirsky, I. , "Three-[Dimnensional and Shell Theom
Anal sis ot Axiallyx Symmetric Motions of Cvi inuors"J .. Appl. 11hceh.
V.23, N, , 195G;, pp. 50;3--568.

73



[15] Greenspon, "Axially Symmetric Vibrations of a Thick Cylindrical Shell
in an Acoustic Medium" J. Acoust. Soc. Amer., V. 32, N. 8, Aug. 1960,
pp. 1017-1925.

[161 Mirsky, I., "Wave Propagation in Transversely Isotropic Circular Cylinders"
J. Acoust. Soc. Amer., V.37, N.6, June 1965, pp. 1016-1026.

[17] Prasad, C. and Jain, R. K., "Vibrations of Transversely Isotropic Cylindrical
Shells of Finite Length" J. Acoust. Soc. Amer., V. 38, N.6, Dec. 1965,
pp. 1006-1009.

[18] Armenakas, A. E., "Propagation of Harmonic Waves in Composite Circular
Cylindrical Shells I:- Theoretical Investigation" AIAA J., V. 5, N. 4, April
1967, pp. 740-744.

[19] Armenakas, A. E., Gazis, D.C. and Herrmann, G., "Free Vibrations of
Circular Cylindrical Shells"First Edition, Pergamon Press, 1969.

[20] Liu, C.K. and Charng, C. 1I., "Thermal and Dynamic Response of an
Infinite Hollow Cylinde;" Dev. Theor. Appl. Mech., V. 2, 1964, pp.
"487-501.

[21] Mindlin, R.D. and Goodman, L.E., "Beam Vibrations With Time De-
pendent Boundary Conditions" J. Appl. Mech., V. 17, (1950), pp. 377-380.

[22] Shin-Ichi Suzuki, "Dynamic Elastic Response of a Ring to Transient Pres-.
sure Loading" J. Appl. Mech., V. 33, N.2, June L966, pp. 261-266.

[23] Garnet, H. and Crouzet-Pascal, J., "Transient Response of a Circular
Cylinder of Arbitrary Thickness in an Elastic Medium, to a D'lane
Dilatational Wave" J. Eng. Mech. Div., Proc. ASCE 93, EM3, June 1967,
pp. 521-531.

[24] Strutt, J. W. (Lord Rayleigh), "The Theory of Sound" Vol. I., Dover Publications,
New York, P. 332.

[25] Fl~igge, W., "Statik und Dynamik der Schalen" Third Edition, Springer
Verlag, Berlin 1962.

[26] lvqasov, V. Z. "General Theory of Shells ar.J its Application in Engineering"
NASA Technical Translation, NASA TT F-99, National Aeronautics avid
Space Administration, Washington, D.C. kpril 1964,

[27] Herrmann, G. and Mirsky, I. "N(cnaxially Symmetric Motions of Cylindrical
Shells" J. Acoust. Soc. Amer., V.29, N.10, Oct. 1J57, pp. 1116-1123

[28] Iteismann, Ii. and Medige, J., "Dynamic Response of Cylindrical Shells
(Part I)" Report NO.13, Division of Jnterdisciplinary Studies and Research,
School of Engineering, State University of New York at Buffalo.

[29] Kloser, J.Nl,, "The Elasticity Solutio of a Long Circular Cylindrical
Shell Subjected to a Uniform Circumfe. -ntial Radial Lin, Load" J. Aero/
Space Sci. , 29, 6:34-8.11, July 1962.

74



[30] Klosner, J. M. and Herman, R., "Comparison of Elasticity and Shell Theory
Solutions for a Circular Cylindrical Shell Subjected to Periodically Spaced
Band Loads" Polytechnic Institute of Brooklyn, Aerospace Lab PIBAL Rept.
658, Oct. 1962.

S31] Klosner, J.M. and Kempner, J., "Comparison of Elasticity and Shell Theory
Solutions" AIAA J. 1, 627-630 (1963).

E32] Klosner, J.M. and Levine, 11.S. "Further Comparison of Elasticity ani
Shell theory solutions" AIAA J., V.4, N. 3, 467-480 (1966).

[33] K. T. Sundara Raja Iyengor and C. V. Yogananda, "Comparison of
Elasticity and Shell Theory Solutions for Long Circular Cylindrical Shells"
AIAA J, V.4, N.12, 2090-2095 (1966).

[34] Reismann, H. and Pawlik, P., "Plane-Strain D. namic Response of a
Cylindrical Shell--A Comparison Study of Three Different Shell Theories
J. Appl. Mech., V. 35, N.2, 297-305, June 1968.

[35] Abromowittz, M. and Stegun, I., "Handbook of Mathematical Functions"
Dover Publications Inc., New York, 1965, p. 374.

S361 Fung, Y. C., "Foundations of Solid Mechanics" Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1965 (pp. 184-189).

[ 37] Reismann, H., "On the Forced Motion of Elastic Solids" Appl. Sci.
Res. 18, Sept. 1967, pp. 156-165.

[38] Lanczos, C.., "Discourse on Fourier Series" Hafner Publishing Company,
New York, 1966.

[39] Reismann, 11. and Pawlik, 13., "On the Plane Strain Dynamic Response of
a Cylindrical Shell Under Lateral Loads" Report NO. 22 Division of Inter-
disciplinary Studies and Research, School of Engineering, State University
of New York at Buffalo, April 1967.

75



AI

I . _ . ,


